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2( p1(x1) y91)9 1 q1(x1) y1 5 (ls11(x1) 1 es12(x1)) y1 ,
The two-dimensional bisection method presented in (SIAM J.

Matrix Anal. Appl. 13(4), 1085 (1992)) is efficient for solving a class 2( p2(x2) y92)9 1 q2(x2) y2 5 (ls21(x2) 1 es22(x2)) y2 ,
of double eigenvalue problems. This paper further extends the 2D
bisection method to full matrix cases and analyses its stablity. As y1(a1) cos a1 2 ( p1 y91)(a1) sin a1 5 0,

(1.2)in a single parameter case, the 2D bisection method is very stable
for the tridiagonal matrix triples satisfying the symmetric-definite

y1(b1) cos b1 2 ( p1 y91)(b1) sin b1 5 0,condition. Since the double eigenvalue problems arise from two-
parameter boundary value problems, an estimate of the discretiza-

y2(a2) cos a2 2 ( p2 y92)(a2) sin a2 5 0,tion error in eigenpairs is also given. Some numerical examples
are included. Q 1996 Academic Press, Inc.

y2(b2) cos b2 2 ( p2 y92)(b2) sin b2 5 0,

where 0 # ai , f, 0 , bi # f, pi . 0 and p9i , qi , sij are1. INTRODUCTION
real valued and continuous, for i, j 5 1, 2. The systems

This paper considers the numerical solution of the fol- (1.2) are known as two-parameter Sturm–Liouville (S-L)
lowing double eigenvalue problems eigenvalue problems which arise in many practical applica-

tions related to mathematical physics and engineering
problems. For instance, the charge-singularity problem [28](A0 2 lA1 2 eA2) y1 5 0,

(1.1) from the electromagnetic field (also cf. Section 5), the self-
(B0 2 lB1 2 eB2) y2 5 0, consistent field (SCF) equation in proton dynamics,

hTj 2 «SCFw1(j, h) 2 lhjX(j) 5 0,where the real pairs (l, e) and the nonzero tensor products
y1 J y2 , y1 [ Rn, y2 [ Rm, are the eigenvalues and the hTh 2 «SCFw2(j, h) 2 ljjY(h) 5 0,
corresponding eigenvectors to be found. In [24] the author

where Tj , Th are second-order differential operators, «SCFpresented a two-dimensional bisection method for the
and X(j), Y(h) are the common energy eigenvalue andabove problems. To apply this method, however, the coef-
eigenfunctions, and the coupling constants (lh , lj) are con-ficient matrices have to satisfy the so-called ‘‘TBC’’ condi-
nected by some formulae; cf. [15] for details. In subsoniction: A0 [ Rn3n, B0 [ Rm3m are irreducible symmetric
aerodynamics, the ‘‘delta wing problem’’ also gives rise totridiagonal matrices; Ai [ Rn3n, Bi [ Rm3m (i 5 1, 2) are
the problem (1.2). A delta wing is idealized as an infinitenonsingular diagonal matrices with the diagonal entries of
sector. The delta wing problem is to determine the naturethe same sign, respectively. This paper is to extend this
of the solution of the potential equation in the neighbor-method to full matrix cases, i.e., Ai [ Rn3n, Bi [ Rm3m are
hood of the tip of the wing. The governing equations forsymmetric for i 5 0, 1, 2 and positive or negative definite
flows over a delta wing which only weakly disturb thefor i 5 1, 2 (symmetric-definite condition for short). The
oncoming uniform flows can be reduced to the equationsstability of the 2D bisection is analyzed. In addition, the
(cf. [38])bound of the discretization error is also estimated since

the problems (1.1) arise by some discrete technique from
A0(a) 1 hh 2 n(n 1 1)k2sn2(a, k)jA(a) 5 0,the differential eigenvalue problems as

A(K) 5 A(2K) 5 0;

* The author thanks Professor P. A. Binding and Professor P. J. Browne B0(b) 1 h2h 1 n(n 1 1)(1 2 k92sn2(b, k9))jB(b) 5 0,
for many stimulating discussions when he visited the University of
Calgary. B(2K9) 5 B9(K9) 5 0,
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where h and n(n 1 1) are the spectral parameters, k 5 2. EIGENCURVES AND TWO-DIMENSIONAL
BISECTIONsin g, k9 5 cos g, g is the half angle of the sector, and

sn(?) is the Jacobian elliptic functions.
In order to decribe the 2D bisection method, we intro-Probably the most natural way in which two-parameter

duce the concept of eigencurves of double eigenvalue prob-S-L problems arise in practice is when the technique of
lems. Letseparation of variables is applied to certain boundary

value problems associated with partial differential equa-
f (l, e) 5 det(A0 2 lA1 2 eA2),

(2.1)
tions [13, 29, 39]. The Mathieu’s, Lamé’s, and ellipsoidal
wave equations are famous examples [1, 2, 36]. Two-

g(l, e) 5 det(B0 2 lB1 2 eB2)parameter S-L problems also arise in a number of other
areas; for instance, in the theory of approximations, in

be two polynomials of order n and m, respectively; wheremany-body diffraction theory, and in nonlinear control
Ai [ Rn3n, Bi [ Rm3m satisfy the symmetric-definite con-problems (cf. [34]).
dition stated in Section 1. We define eigencurves ofTwo-parameter eigenvalue problems have been thor-
f (l, e) 5 0 (or g(l, e) 5 0) as the curves in the l–e planeoughly studied in theory (cf. [3, 6, 16]); the work of the
satisfying the equation f 5 0 (or g 5 0). Therefore, thecorresponding numerical analysis has also attracted a lot
problem is to find intersection points of two families ofof attention (e.g., cf. [10, 12, 18, 21–23, 30]). In particular,
eigencurves. If f (l, e) and g(l, e) have no nonconstant[5, 9] had successfully extended the Prüfer method, which
common factors, then by Bezont’s theorem [35, p. 44], theis one of the most efficient and powerful techniques
two families of eigencurves f (l, e) 5 0 and g(l, e) 5 0for ordinary S-L eigenvalue problems [25, 27], to two-
meet at n 3 m points, counting their multiplicities.parameter cases. Since the Prüfer method is a kind of
About the range of these intersection points, [24] givesshooting method, a good starting value is a key to
a result similar to Gerschgorin’s theorem.success. Although both [5, 9] gave the strategy to produce

The 2D bisection presented in [24] is based on continuitystarting values, the problem cannot be considered com-
and monotonicity properties of the eigencurves, which arepletely solved because the two-parameter situation is
certainly true for the matrix triple (A0 , A1 , A2) or (B0 , B1 ,much more complicated than a single parameter case.
B2) satisfying the ‘‘TBC’’ condition [24]. To extend theMatrix-type methods, like 2D bisection, provide another
bisection method to full matrix cases, the key is to showapproach. Not only can they produce starting values for
the corresponding eigencurves still hold these properties.the 2D Prüfer method, but they also have the advantage
In [7, 8], Professors Binding and Browne investigatedof simplicity and maintain their efficiency even for high
eigencurves of the differential equations (1.2). Underoscillation solutions (cf. [25]). Therefore, it is necessary
certain conditions, they pointed out, for any n $ 0, theto develop matrix-type methods for two-parameter eigen-
nth eigencurve en(l) of each equation in (1.2) is analyticvalue problems.
over l [ R and satisfiesThis paper mainly concerns computation and related

theoretical analysis of the eigenpairs. It does not mean
en(l) 5 cl 1 o(l) as l R y. (2.2)that computation of the eigenvectors is a trivial task. Since

the numerical solution of three-dimensional partial differ-
This tells us the asymptotic behavior of eigencurves ofential equations often leads to very large systems of equa-
differential equations. For full matrices Ai , Bi (i 5 0, 1, 2)tions and poses serious complexity problems [14, 31], it
in the problem (1.1) with the symmetric-definite condition,seems worthwhile to consider the classical method of sepa-
the following properties can be easily verified.ration of variables for elliptic boundary-value problems

[11, 21]. In doing this, the computation of eigenvectors LEMMA 1. Any straight line l 5 l0 /e 5 e0 has n inter-
plays a major role. The importance of the eigenvector’s section points (they may coincide) with eigencurves of
computation cannot be overemphasized and will be treated f (l, e) 5 0, where f (l, e) is defined in (2.1). The n eigen-
as the subject of another paper [26]. curves e1(l), ..., en(l) of f (l, e) 5 0 are continuous on

The format of this paper is organized in the following h2y , l , 1y; 2y , e , 1yj and each of them will
way. The concept of the eigencurve and the extension cross once and only once any line l 5 l0 /e 5 e0 .
of the 2D bisection method are described in Section 2.
Section 3 presents stability analysis for the 2D bisection The above lemma is also true for the m eigencurves

of g(l, e) 5 0. Therefore, each of the eigencurves ofby Wilkinson’s backward error analysis technique. Section
4 discusses the definiteness condition and discretization f (l, e) 5 0 or g(l, e) 5 0 is strictly monotonic.

We are now in a position to describe an extension oferror of double matric eigenproblems from double differ-
ential eigenproblems. Numerical examples are given in the 2D bisection method. Given a rectangle D 5 [w1 , w2 ;

v1 , v2], which is formed by four sides paralleling coordinateSection 5.
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axes: l 5 w1 , l 5 w2 , e 5 v1 , e 5 v2 . Before considering
j . lnFmaxSuw(0)

1 2 w(0)
2 u

«
,
uv(0)

1 2 v(0)
2 u

«
DG@ln 2. (2.4)the problem of how to locate intersection points (i.e., eigen-

pairs) of eigencurves f (l, e) 5 0 and g(l, e) 5 0 in this
rectangle, we recall that if M [ Rn3n is a real symmetric
matrix, then the leading principal minors of M 2 lI form The matrices Ai , Bi (i 5 0, 1, 2) in (2.1) are often tridiago-
a Sturm sequence hpr(l)jn

r50 , where p0(l) 5 1 by definition. nal in practice. In such cases, it is preferable to use the
Consequently the number of eigenvalues greater than l following sequence hsi(e)jn

i51 , say, for det(A0 2 lA1 2
is equal to the number of agreements in sign between eA2) 5 0 with l 5 l0 ([33]; also cf. [42, pp. 249–250; 32,
consecutive members of the sequence h pr(l)jn

r50 (if some pp. 52–53]),
pr(l) is zero then its sign is taken to be that of pr21(l)).
Furthermore, the matrix pencil A 2 lB possesses the same

s1(e) 5 a(0)
11 2 l0a

(1)
11 2 ea(2)

11 , (2.5)property if A is symmetric and B is symmetric positive
definite; i.e., the number of eigenvalues of Ax 5 lBx which si(e) 5 a(0)

ii 2 l0a
(1)
ii 2 ea(2)

iiare greater than l is equal to the number of agreements
2 (a(0)

i,i21 2 l0a
(1)
i,i21 2 ea(2)

i,i21)
2/si21(e). (2.6)in sign between consecutive members of the sequence

hdet(Ar 2 lBr)jn
r50 with the definition of det(A0 2 lB0) ;

1, where Ar , Br are the leading principal submatrices of
where the a(l)

ij are entries of Al (i, j 5 1, ..., n; l 5 0, 1, 2),order r of A and B, respectively (see [33, 41]). Therefore,
see the next section for more details.a bisection method associated with the Sturm sequence

When Ai , Bi (i 5 0, 1, 2) are large, band matrices andproperty can be employed to locate any individual eigen-
the band-widths are much smaller than the orders of Aivalue of Ax 5 lBx.
and Bi , it is important to take advantage of the band struc-For the problem (1.1), suppose Ai , Bi (i 5 0, 1, 2) satisfy
ture. We may use a modification of elimination method tothe symmetric-definite condition. Hence, both families of
determine the sign of hdet(A0,r 2 lA1,r 2 eA2,r)jn

r50 andeigencurves are monotonic and continuous on h2y ,
hdet(B0,r 2 lB1,r 2 eB2,r)jm

r50 , in which the reduction pro-l , 1y; 2y , e , 1yj. Based on this observation, we can
cess involved in triangular decomposition with pivoting isadopt two-dimensional bisection to locate the intersection
applied to only the first r 1 1 rows, for successive valuespoints of f (l, e) 5 0 and g(l, e) 5 0 in the rectangle D.
of r from 1 to n 2 1 (cf. [20] for details).Note that if there are eigencurves of f (l, e) 5 0 (or g(l,

Once an eigenpair has been isolated, the method ofe) 5 0) passing through the rectangle D, they must cross
successive linear interpolation can be used to obtain aat least one side of D. On that side, however, either l or
higher convergence rate (cf. [33]).e is a constant. So the problem is turned into an ordinary

generalized eigenvalue problem. By the Sturm sequence
property, we can check if that side contains eigenvalues

3. ROUNDING ERROR ANALYSIS
or not. If either eigencurves of f (l, e) 5 0 or that of g(l,
e) 5 0 do not pass D, then there is no eigenpair inside D. It is well known that the ordinary bisection method is
Otherwise, divide D into four equal smaller rectangles and very stable [41]. In this section, we will examine the effect
repeat the above process until both sides of the smaller of rounding-error arising from the 2D bisection process
rectangle are less than a required accuracy «. Then the for the problem (1.1). For simplicity, we suppose Ai ,
midpoint of the rectangle can be taken as an approximate Bi (i 5 0, 1, 2) are all symmetric tridiagonal.
eigenpair. If there is more than one eigencurve of Consider a typical step of the algorithm. Fix l :5 l0 in
f (l, e) 5 0 and/or g(l, e) 5 0 passing through the last the first equation of (1.1) and compute the sequence w1(l0 ,
rectangle, we consider this solution as the approximation e), w2(l0 , e), ..., wn(l0 , e) according to the formulae
of a group of roots (repeated or very closed roots).

Let [w( j)
1 , w( j)

2 ; v( j)
1 , v( j)

2 ], j 5 0, 1, 2, ..., be a sequence of
rectangles obtained in the above 2D bisection method, w1(l0 , e) 5 a(0)

11 2 l0a
(1)
11 2 ea(2)

11 , (3.1)
where [w(0)

1 , w(0)
2 ; v(0)

1 , v(0)
2 ] 5 [w1 , w2 ; v1 , v2]. Notice that

wi(l0 , e) 5 (a(0)
ii 2 l0a

(1)
ii 2 ea(2)

ii )wi21(l0 , e)

uw( j)
1 2 w( j)

2 u 5 22j uw(0)
1 2 w(0)

2 u, 2 (a(0)
i,i21 2 l0a

(1)
i,i21 2 ea(2)

i,i21)
2wi22(l0 , e) (3.2)

uv( j)
1 2 v( j)

2 u 5 22j uv(0)
1 2 v(0)

2 u. (2.3)

(i 5 2, 3, ..., n), where a(l)
ij is the entry (i, j) of Al (i, j 5 1,

2, ..., n; l 5 0, 1, 2) and w0(l0 , e) ; 1 by definition.In order to satisfy uw( j)
1 2 w( j)

2 u , « and uv( j)
1 2 v( j)

2 u , «,
the number of bisections has to meet the following in- In order to prevent overflow and underflow, the follow-

ing sequence hsi(l0 , e)jn
i51 is actually calculatedequality
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Proof. The proof is by induction for the index m: 1 #
s1(l0 , e) 5

w1(l0 , e)
w0(l0 , e)

5 a(0)
11 2 l0a

(1)
11 2 ea(2)

11 , (3.3) m # n.
It is not difficult to verify that Theorem 1 is true for

m 5 1, 2. Let us assume that (3.7) hold for m # k, i.e., thesi(l0 , e) 5
wi(l0 , e)

wi21(l0 , e)
5 [(a(0)

ii 2 l0a
(1)
ii 2 ea(2)

ii )wi21(l0 , e)
computed s1(l0 , e), ..., sk(l0 , e) are exact for three matrices
having modified elements up to a(l)

kk 1 da(l)
kk, a(l)

k,k21 1
2 (a(0)

i,i21 2 l0a(1)
i,i21 da(l)

k,k21 (l 5 0, 1, 2) and the modifications satisfy (3.7), then
we show that the computed sk11(l0, e) is the exact value2 ea(2)

i,i21)
2wi22(l0 , e)]/wi21(l0 , e)

for three matrices having these same modified elements
in rows 1, 2, ..., k and modified elements a(l)

k11,k11 1
da(l)

k11,k11, a(l)
k11,k 1 da(l)

k11,k (l 5 0, 1, 2).

Suppose sk(l0, e)sk21 (l0, e) ? 0,1

5

a(0)
ii 2 l0a(1)

ii 2 ea(2)
ii

2
(a(0)

i,i21 2 l0a(1)
i,i21 2 ea(2)

i,i21)
2

si21(l0 e)

(when si21si22 5/ 0)

a(0)
ii 2 l0a

(1)
ii 2 ea(2)

ii

(when si21 5/ 0, but si22 5 0)

2y

(when si22 5/ 0, but si21 5 0), i 5 2, 3, ..., n.

sk11(l0, e)

5 fl Sa(0)
k11,k11 2 l0a(1)

k11,k11 2 ea(2)
k11,k115

2
(a(0)

k11,k 2 l0a(1)
k11,k 2 ea(2)

k11,k)2

sk(l0, e) D
(3.4)

5 fl(a(0)
k11,k11 2 l0a(1)

k11,k11 2 ea(2)
k11,k11)(1 1 d1)

Then the Sturm sequence count is given by the number of
positive si(e), i 5 1, ..., n (cf. [33]). 2

(fl(a(0)
k11,k 2 l0a(1)

k11,k 2 ea(2)
k11,k)(1 1 d2))2

sk(l0, e)By the backward error analysis [40], we can prove the
following theorem 1. Let fl(?) stand for the result by per-

5 a(0)
k11,k11 (1 1 «90) 2 l0a(1)

k11,k11 (1 1 «91) 2 ea(2)
k11,k11 (1 1 «92)forming the appropriate floating-point operation (?). Let n

denote one of the four operations 1, 2, 3, 4. Because of
rounding errors, we have 2

[a(0)
k11,k (1 1 d90) 2 l0a(1)

k11,k (1 1 d91)2 ea(2)
k11,k (1 1 d92)]2

s1(l0, e)
.

fl(x n y) 5 (x n y)(1 1 d), udu # 22t. (3.5) Where ud1u # 22t, (1 2 22t)3/2 # 1 1 d2 # (1 1 22t)3/2. So

where x and y are standard floating-point numbers, t (here
(1 2 22t)3 # (1 1 «9l ) # (1 1 22t)3, l 5 0, 2;

and below) is the number of digits after the binary point
for the computer in use. If udiu # 22t (i 5 1, 2, ..., n) and (1 2 22t)4 # (1 1 «91) # (1 1 22t)4;

(3.8)n ? 22t # 0.01, then, when n . 2, we have (e.g., cf.
[17, pp. 92–93]) (1 2 22t)7/2 # (1 1 d9l ) # (1 1 22t)7/2, l 5 0, 2;

(1 2 22t)9/2 # (1 1 d91) # (1 1 22t)9/2.
1 2 n ? 22t # p

n

i51

(1 1 di) # 1 1 1.01 ? n ? 22t. (3.6)
Therefore,

THEOREM 1. For any value of e the computed values
uda(l)

k11,k11u 5 ua(l)
k11,k11«9l u # (3.03)22t ua(l)

k11,k11u, l 5 0, 2;of the sequence hsi(l0 , e)jn
i51 are the exact values correspond-

ing to the modified tridiagonal matrices A0 1 dA0 , A1 , 1 uda(l)
k11,ku 5 ua(l)

k11,kd9l u # (3.54)22t ua(l)
k11,ku, l 5 0, 2;

(3.9)dA1 , and A2 1 dA2 . Let da(l)
ij denote the entry (i, j) of dAl

(i, j 5 1, 2, ..., n; l 5 0, 1, 2); then uda(1)
k11,k11u 5 ua(1)

k11,k11«91u # (4.04)22t ua(1)
k11,k11u;

uda(1)
k11,ku 5 ua(1)

k11,kd91u # (4.55)22t ua(1)
k11,ku.uda(l)

ii u # (3.03)22t ua(l)
ii u, l 5 0, 2;

uda(l)
i,i21u # (3.54)22t ua(l)

i,i21u, l 5 0, 2; (3.7) The proof is then completed.

uda(1)
ii u # (4.04)22t ua(1)

ii u;
1 If sk(l0 , e) 5 0, the conclusion is evident; if sk21(l0 , e) 5 0, there

uda(1)
i,i21u # (4.55)22t ua(1)

i,i21u. are no operations for al
k11,k (l 5 0, 1, 2); hence the proof can be simplified.
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As the theorem shows, the 2D bisection method is very respectively, and that some discrete technique is employed
to the equations in (1.2), then the discrete equationsstable for the tridiagonal matrix triples satisfying the sym-

metric-definite condition.

(A0 2 lA1 2 eA2)z1 5 t1(z1),
(4.4)4. DEFINITENESS CONDITION AND DISCRETIZATION

(B0 2 lB1 2 eB2)z2 5 t2(z2),ERROR ESTIMATE

As we stated in the Introduction, the problem (1.1) arises are formed, where Ai [ Rn3n, Bi [ Rm3m (i 5 0, 1, 2),
from the two-parameter S-L eigenvalue problem (1.2). z1 5 [y1(x(1)

1 ), ..., y1(x(1)
n )]T, z2 5 [y2(x(2)

1 ), ..., y2(x(2)
m )]T,

Therefore it is needed to estimate the discretization error t1(z1) and t2(z2) are local truncation errors. In practical
when (1.2) is replaced by (1.1). To this end, we first intro- computation, the matrix equations
duce an important concept—the definiteness condition. We
can describe this condition for more general multiparame-

(A0 2 l̃A1 2 ẽA2)z̃1 5 0,
(4.5)ter eigenvalue problems as

(B0 2 l̃B1 2 ẽB2)z̃2 5 0,

are solved, where (l̃, ẽ) is intended to be an approximation

l0 M10u1 1 l1 M11u1 1 · · · 1 lk M1k u1 5 0,

_

l0 Mk0uk 1 l1 Mk1uk 1 · · · 1 lk Mkkuk 5 0,

(4.1)
to some eigenpair (l, e) of (4.4) and the net function z̃1 ^

z̃2 is intended to be an approximation to the corresponding
eigenfunction on the net. The error in eigenpairs is denoted

where ui [ Cni (i 5 1, ..., k), Mij [ Cni3ni (i 5 1, ..., k; j 5 by e 5 (l, e)T 2 (l̃, ẽ)T.
0, 1, ..., k) are Hermitian matrices over the complex field. In [22] the author gave the following error estimation.
A nonzero (k 1 1)-tuple of scalars l 5 (l0, ..., lk) is called

THEOREM 2. Suppose that z̃1 5 z1 1 o(1), z̃2 5 z2 1an eigenvalue such that there exist vectors ur, r 5 1, ..., k,
o(1), and iz1i 5 iz2i 5 1. Ifsatisfying the k equations in (4.1). The corresponding ten-

sor product u 5 u1 ^ · · · ^ uk is called the eigenvector of
the problem (4.1). We introduce the following.

Definiteness Condition. For some fixed set of real sca- Udet 1zT
1 A1z1 zT

1 A2 z1

zT
2 B1z2 zT

2 B2 z22U$ d . 0, (4.6)lars e0, ..., ek, and for all sets

gi [ Cni, gi ? 0, i 5 1, ..., k, (4.2)

then
we have

iei2 # c · d21(it1i2
2 1 it2i2

2)1/2, (4.7)

where c is a constant independent of the truncation errors.
det1

e0 ) ek

gH
1 M10 g1 ) gH

1 M1k g1

_

gH
k Mk0 gk ) gH

k Mkk gk

2. 0. (4.3)
Notice that condition (4.6) is somewhat stronger than

(4.3) in the sense that we let e0 ? 0, e1 5 e2 5 0.
The estimation (4.7) also holds if

Atkinson [3] proved that if the above definiteness condi-
tion holds, then all eigenvalues are real and the number
of distinct eigenvalues does not exceed Pk

r51 nr; there is a Udet 1z̃T
1 A1z̃1 z̃T

1 A2 z̃1

z̃T
2 B1z̃2 z̃T

2 B2 z̃2
2U$ d . 0. (4.8)

complete set of eigenvectors, orthogonal in certain sense,
where to each eigenvalue is associated a number of eigen-
vectors equal to its multiplicity.

Now we turn to the discretization error of the problem In application, the matrices Ai, Bi are usually symmetric.
However, in derivation of the above results, we did not(1.1) from the problem (1.2). We will treat the case of two

parameters; however, the results can be easily extended exploit the symmetricity of Ai, Bi; instead, we invoke the
conditions z̃1 5 z1 1 o(1), z̃2 5 z2 1 o(1). These conditionsto multiparameter cases. Suppose that hx(1)

i jn
i51 and

hx(2)
i jm

i51 are two nets of grid points on [a1, b1] and [a2, b2], are not necessary if the following condition (4.9) holds.
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THEOREM 3. Suppose Ai, Bi (i 5 0, 1, 2) are real and oped (e.g., cf. [37]), whether or not those techniques and
skills can be applied to multiparameter eigenvalue prob-symmetric. If the net functions z1, z2 and their approxima-

tions z̃1, z̃2 satisfy iz1i 5 iz2i 5 iz̃1i 5 iz̃2i 5 1 and lems is an open question, as one might notice that both
Theorems 2 and 3 are not ready to be applied in practice.
Further work is necessary, and this virgin field is waiting
for us to exploit.Udet 1zT

1 A1z̃1 zT
1 A2 z̃1

zT
2 B1z̃2 zT

2 B2 z̃2
2U$ d . 0, (4.9)

5. NUMERICAL EXAMPLES

In this section we present some numerical results. The
then accuracy of the results is limited by two factors. One is the

truncation error. As shown in Section 4, the exact solution
iei1 # c · d21(it1i2 1 it2i2), (4.10) of the discrete double eigenvalue problem (1.1) is only an

approximate solution to the original differential problemiei2 # c · d21(it1i2
2 1 it2i2

2)1/2, (4.11)
(1.2). The other is roundoff error. In most cases, it is impos-

ieiy # c · d21 max hit1i2, it2i2j, (4.12) sible to get the exact solution of (1.1) due to finite-digit
operation. It is not appropriate to set the termination crite-

where c is a constant independent of the truncation errors. rion of the 2D bisection less than (in order) the trunca-
tion error.Proof. From the first equations of (4.4) and (4.5), we

The first example in this section is a model problemhave
of which we know the exact solution. A comparison of
computed solutions with the 2D bisection presented in [24]

z̃T
1 A0z1 2 lz̃T

1 A1z1 2 ez̃T
1 A2z1 5 z̃T

1 t1(z1), (4.13) has been made in terms of CPU time and accuracy. The
result illustrates the necessity of our extension. The secondzT

1 A0z̃1 2 l̃zT
1 A1z̃1 2 ẽzT

1 A2z̃1 5 0. (4.14)
example was considered by Fox, Blum, et al. The last exam-
ple, which has applications in electrostatic fields, is taken

Note that Ai (i 5 0, 1, 2) are symmetric, and subtracting
from [28]. All computations were carried out in 32-bit

(4.13) from (4.14) gives
arithmetic on a CYBER 860 computer.

EXAMPLE 1. Consider a model double eigenvalue(l 2 l̃)zT
1 A1z̃1 1 (e 2 ẽ)zT

1 A2z̃1 5 2z̃T
1 t1(z1). (4.15)

problem

Similarly, we have
y01 1 2ly1 1 ey1 5 0,

(l 2 l̃)zT
2 B1z̃2 1 (e 2 ẽ)zT

2 B2z̃2 5 2z̃T
2 t2(z2). (4.16)

y02 1 ly2 1 2ey2 5 0,
(5.1)

Combining (4.15) and (4.16) gives y1(0) 5 y1(f) 5 0,

y2(0) 5 y2(f) 5 0.

e 5 1l 2 l̃

e 2 ẽ25 21zT
1 A1z̃1 zT

1 A2z̃1

zT
2 B1z̃2 zT

2 B2z̃2
2

21

1z̃T
1 t1(z1)

z̃T
2 t2(z2)2. The exact eigenpairs are (l, e) 5 ((2(k 1 1)2 2 (l 1 1)2)/

3, (2(l 1 1)2 2 (k 1 1)2)/3), k, l 5 0, 1, 2, ....
By Numerov’s method with uniform mesh length h 5

Hence f/(n 1 1), the approximative matrix equations were
formed,

ieip # c · d21 I1z̃T
1 t1(z1)

z̃T
2 t2(z2)2Ip

, (4.17) A0 x 1 lA1x 1 eA2x 5 0,
(5.2)

B0 y 1 lB1 y 1 eB2 y 5 0,

where p 5 1, 2, y (cf. [19]). The conclusions of the theorem
where x,y [ Rn, A0 5 B0 5 (cij) are n by n symmetric

are then evident.
tridiagonal matrices with cii :5 22 (i 5 1, ..., n), ci,i11 :5
1 (i 5 1, ..., n 2 1), A1 5 B2 5 h2(2I 1 AhA0), A2 5 B1 5It is easy to see that the truncation error estimate is

closely related to the perturbation analysis of the eigenval- h2(I 1 asA A0), I is identity matrix. Note that the 2D bisection
in [24] cannot be applied in this case.ues. Although the perturbation theory of ordinary matrix

eigenvalue problems has a long history and is quite devel- Since A1 , A2 , B1 , and B2 are all positive definite, we use
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TABLE Ithe algorithm described in Section 2 to solve eigenpairs in
the rectangle [210, 17; 210, 17]. Taking n 5 199, the results

x/f l2 (Morrison) l2 (Bailey) l2 (computed)coincide with the exact solutions to at least five decimal
places. The CPU time was 54 s. 0.04021 0.134437 0.1344183 0.1344238

If we adopt the center difference scheme to approximate 0.28858 0.275451 0.2754502 0.2753945
0.9500 0.701815 a 0.7025342(5.1), A1 , A2 , B1 , and B2 in (5.2) will be diagonal and
1.125 0.887700 0.8877101 0.8876282definite. Therefore we can use the 2D bisection method
1.875 1.971545 a 1.971277in [24]. By taking n 5 499 with uniform mesh, the computed
1.950 1.995385 a 1.995327

results coincide with the exact solutions to two decimal
places within a CPU time of 142 s. a Results not given in [5].

EXAMPLE 2. [10, 18] studied the example

where k 5 sin(1/2uf 2 xu), k9 5 Ï1 2 k2, and x is the angley0 1
1

p(x)
(l 1 ex 1 x2)y 5 0,

(5.3) of the sector. The problem is divided into three cases: spike
when x is small, slit when x is close to 2f, and nearlyy(21) 5 y(0) 5 y(1),
straight edge when x is close to f. We use Marčuk’s integral
identity to discrete the differential equations in (5.4) (cf.where p(x) 5 1 1 x 1 x2.
[4, Chap. 4]). The computed results are given in Table I.To discrete (5.3), take uniform mesh points x(1)

1 , ...,
x(1)

n in (21, 0) and x(2)
1 , ..., x(2)

n in (0, 1), so that the step
ACKNOWLEDGMENTsize is h 5 1/(n 1 1). Since y(0) 5 0, y9(0) ? 0, we assume

y(x(1)
n ) ? 0, y(x(2)

1 ) ? 0 and let the eigenvectors satisfy
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1 ) 2y(0))/h 5 2( y(x(1)
n ) 2y(0))/h. Using the algo- tive suggestions of the initial version of this article.
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